「1.1の8乗は2より大きい」を何パターンで示せるか?

というわけで数学遊びです。範囲としては数Ⅰ+数Aの知識でいけるのでそのあたりのテスト問題とかに出そうだな~ということでやってみています。証明が面倒になるものも含まれていますので気になる高校生の人は見てみるとよいと思います。なお、この記事を書く前にどうせならWindowModePatchの記事とかサーバーの更新の記事とかを入れておけば面白かったかな~と思わなくもないのですが、Twitterに書いたのでこちらを先にしました。

 

正式な問題はこの形

Twitterにもつぶやきましたが問題を解く前に意図を確認するために書いてみます。

Q. 1.1の8乗は2より大きいことを示せ。ただし直接計算を行う場合は正確に行うこと。また累乗の数の大小関係は証明されていないものとする。

実は問題が微妙にいやらしいのが面白いところ。これが例えば「1.001の750乗は2より大きいことを示せ。」という問題であれば解法は限定されるのですが手計算できるところに押さえられているのがミソです。そのために「直接計算を行う場合」の注意書きを入れてあるわけです。そして最後の意味は「概算の形で計算したいなら累乗の大小関係について証明した上でやりなさい」という意味をいっています。この部分は解答を見た方が意味がわかると思います。

ちなみにこの問題の形は自然対数の極限を考える段階で現れる問題の変化系となっていいます。そのため、その部分に入る前に宿題として出しておいて…ということも考えられる問題という意味も含まれています。

 

私が考えた解答は以下の3パターン

一つずつ紹介していきます。

直接計算パターン

A1. 値を直接計算して求める。

ちょっと面白いのが4乗までであればパスカルの三角形を考えればよいので何も考えなくても計算できるけれども5乗以上となると手計算では難しくなるところですね。これを考えた人は最後まで間違わずにできたでしょうか。(「直接計算を行う場合は正確に行うこと」に注意)

 

間接計算パターン

概算の形で計算するものです。問題文より累乗の数に対しての大小関係を証明した上で行います。

A2. 累乗の数に対する大小関係として以下の命題を証明する

Th2. となるa,bと自然数nに対して

Pr2. 数学的帰納法を用いる。

n=1のときはa>bとなり仮定より満たされる。を仮定すると

よりとなり

よって数学的帰納法より題意は示された。

 

A2.1 1.12 = 1.21 よって 1.18 > 1.24, 1.22 = 1.44 よって 1.18 > 1.422, 1.422 = 2.0164 よって 1.18 > 2.0164 > 2

A2.2 √2 = 1.41… よって 2 < 1.422, √1.42 = 1.19… よって 2 < 1.204, √1.20 = 1.09… よって 2 < 1.18

A2.3 1.14 = 1.4641 √2=1.41… よって (1.14)2 >(√2)2 よって 1.18 > 2

大小関係の証明がないと不等号の部分が正しいという根拠を失ってしまうわけですね。そのため証明が先に必要になります。証明の部分は今回の問題で必要となる範囲でのみ証明がされていればOKなので指数の部分が自然数のみとなっていたりしています。あとは問題の状態が満たされるように概算を行っていけばいいわけですね。このときに8が23ということをうまく使っていくのが美しいところでしょうか。なお根号に関する計算はテスト問題で処理する場合のために開平方で計算しているという仮定です。そのため有効桁は3桁が確定すれば次に進む、という手順で行います。

 

二項定理パターン

高校生レベルならこれを使って示してほしい、という意味の問題でした。解答はこちら。

A3. 二項定理を用いると

よってx=0.1,n=8を代入すると0以上8以下の整数kにおいてであり、

こちらの場合は数列の極限とかいろいろなことを考える前段階の証明として一度はやっておいた方がよいと思われるものです。似たような証明であればテスト問題や入試問題にも出るかもしれませんね。ということをわざわざ国立大学の前期日程の試験が終わった後で書かなくても…

 

数学を使って考えることができたでしょうか

今回は大きく分けて3パターン(間接的な方法ではさらに3つ)で示してみましたがほかに考えついた人はこの記事のコメントにでも返していただけるとありがたいです。なお、二項定理パターンはほかにも理科系(主に物理)科目の計算で1より微妙に大きい数や小さい数を近似するときに使うパターンでもあるので知っておいて損はありません。

…で、こういう問題を考えていると思うことは直接計算しなくても示すことができる問題というのはいろいろとある、ということです。現実世界でも直接答えを示せなくても間接的に示したりする例もあることですので知っておくとよいことがあるかもしれませんね。

 

LINEで送る
[`fc2` not found]
このエントリーを Google ブックマーク に追加

コメントを残す

メールアドレスが公開されることはありません。

*

この記事のトラックバック用URL